

Cascading risks from climate change for infectious diseases in Europe

Jan C. Semenza European Centre for Disease Prevention and Control

CLIMATE CHANGE

Severe weather	Extreme heat	Air pollution	Water contamination & quantity	Changes in vector ecology	Environmental degradation	Rising sea levels	Food supply and safety
			Human/ Social/ Financia	al/ Physical/ Natural Co	apital		
Injuries, fatalities, drowning	Heat-related mortality and morbidity, CVD	Asthma, allergies, CVD	Dehydration, Infections with: Campylobacter, Cholera, Cryptosporidium, Vibrio, etc.	Chikungunya, dengue, Lyme disease, malaria, Rift Valley fever, West Nile fever	Civil conflict, physical and mental health	Displacement, drowning	Malnutrition, diarrheal diseases
			Human/ Social/ Financia	l/ Physical/ Natural Ca	ipital		

Semenza JC, Ebi KL. J Travel Med. 2019;26(5).

Cascading risk pathways from climate change for waterborne diseases

Semenza JC, Nat Immunol. 2020 May; 21(5):484-487

Cascading risks from climate change for waterborne diseases

 A heavy rain event can potentially trigger a cascading event with other consequences of significant magnitude, even larger than the initial rain event.

 Such cascading effects are a function of the magnitude of the existing vulnerabilities in society rather than of the initial hazard.

Semenza JC, Nat Immunol. 2020 May;21(5):484-487

Heavy rain

Storm runoff

Mobilizes & transports pathogens

nin selles per secol des num de demanders (de s

Waterborne outbreaks

Semenza JC, Nat Immunol. 2020 May; 21(5):484-487

Semenza JC, Nat Immunol. 2020 May;21(5):484-487

Seasonal distribution of waterborne outbreaks by size of outbreak, Denmark, Finland, Norway and Sweden, 1998–2012

Guzman-Herrador B, Euro Surveill. 2015;20(24):pii=21160.

Association between heavy precipitation events and waterborne outbreaks in four Nordic countries, 1992–2012

- Matched case-control study
- Epidemiological registries of waterborne **outbreaks**
- Meteorological data between 1992 and 2012 from four Nordic countries:
 - Central Weather Station
 - Gridded precipitation data
- Heavy precipitation events were defined by above average (exceedance: 95 percentile) daily rainfall during the preceding week using local references

Guzman-Herrador B, J of Water and Health 2016;14(6):1019-1027

Association between waterborne outbreaks and exceedance precipitation during the previous week

Cacoc

Cases			week i phor to outbreak (1-7 days				9			
N (exc	eedance d	lays)	Controls 1 day		1 day ≥		\geq 2 days		\geq 2 days	
0	1	2 +	0	1	2 +	OR (95% CI)	р		1	
26	51	12	88	249	19	1.39 (0.82–2.37)	0.219	3.06 (1.38-6.78)	0.006	
20	34	9	57	184	11	1.81 (0.96-3.42)	0.069	4.27 (1.01-11.33)	0.004	
6	17	3	31	65	8	0.75 (0.27-2.04)	0.570	1.45 (0.34-6.13)	0.613	
22	36	8	62	189	13	1.80 (0.99-3.29)	0.055	3.13 (1.20-8.17)	0.020	
2	12	3	17	47	4	0.43 (0.09-2.06)	0.29	3.23 (0.63-16.61)	0.160	
5	10	5	19	57	4	1.43 (0.44-4.65)	0.549	8.64 (1.58-47.11)	0.013	
20	37	7	66	176	14	1.41 (0.76–2.60)	0.277	2.31 (0.87-6.14)	0.092	
	N (exc 0 26 20 6 22 2 5 20	N (exceedance of 0 1 26 51 20 34 6 17 22 36 2 12 5 10 20 37	N (exceedance days) 0 1 2+ 26 51 12 20 34 9 6 17 3 22 36 8 2 12 3 5 10 5 20 37 7	N (exceedance days) Control 0 1 2+ 0 26 51 12 88 20 34 9 57 6 17 3 31 22 36 8 62 2 12 3 17 5 10 5 19 20 37 7 66	N (exceedance days) Controls 0 1 2+ 0 1 26 51 12 88 249 20 34 9 57 184 6 17 3 31 65 22 36 8 62 189 2 12 3 17 47 5 10 5 19 57 20 37 7 66 176	N (exceedance days) Controls 0 1 2+ 0 1 2+ 26 51 12 88 249 19 20 34 9 57 184 11 6 17 3 31 65 8 22 36 8 62 189 13 2 12 3 17 47 4 5 10 5 19 57 4 20 37 7 66 176 14	N (exceedance days)Controls1 day01 $2+$ 01 $2+$ OR (95% Cl)26511288249191.39 (0.82–2.37)2034957184111.81 (0.96–3.42)6173316580.75 (0.27–2.04)2236862189131.80 (0.99–3.29)2123174740.43 (0.09–2.06)5105195741.43 (0.44–4.65)2037766176141.41 (0.76–2.60)	N (exceedance days)Controls1 day01 $2+$ 01 $2+$ 26511288 249 19 $1.39 (0.82-2.37)$ 0.219 203495718411 $1.81 (0.96-3.42)$ 0.069 617331658 $0.75 (0.27-2.04)$ 0.570 223686218913 $1.80 (0.99-3.29)$ 0.055 212317474 $0.43 (0.09-2.06)$ 0.29 510519574 $1.43 (0.44-4.65)$ 0.549 203776617614 $1.41 (0.76-2.60)$ 0.277	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Week 1 prior to outbreak (1–7 days)

Guzman-Herrador B, J of Water and Health 2016;14(6):1019-1027

Heavy rain

Floods

Damage critical water supply

an selector seconderador estatemente en c

Waterborne outbreaks

Semenza JC, Nat Immunol. 2020 May;21(5):484-487

Semenza JC, Nat Immunol. 2020 May;21(5):484-487

Association between waterborne outbreaks and exceedance precipitation during the previous week

Cases

g	the	previous	week	
Weel	k 1 prior to	outbreak (1–7 days)		

	N (exceedance days)			Contro	Controls		1 day		\geq 2 days	
Sample	0	1	2 +	0	1	2 +	OR (95% CI)	р	OR (95% CI)	p
All	26	51	12	88	249	19	1.39 (0.82-2.37)	0.219	3.06 (1.38-6.78)	0.006
Spring-summer	20	34	9	57	184	11	1.81 (0.96-3.42)	0.069	4.27 (1.61-11.35)	0.004
Autumn-winter	6	17	3	31	65	8	0.75 (0.27-2.04)	0.570	1.45 (0.34-6.13)	0.613
Groundwater	22	36	8	62	189	13	1.80 (0.99-3.29)	0.055	3.13 (1.20-8.17)	0.020
Surface water	2	12	3	17	47	4	0.43 (0.09-2.06)	0.29	3 07 (0 67 16 61)	0.160
Single household	5	10	5	19	57	4	1.43 (0.44-4.65)	0.549	8.64 (1.58-47.11)	0.013
Municipal/private	20	37	7	66	176	14	1.41 (0.76-2.60)	0.277	2.51 (0.07 - 0.14)	0.092

Guzman-Herrador B, J of Water and Health 2016;14(6):1019-1027

Cascading risk pathways from climate chang for vectorseas 6

Have dengue and chikungunya outbreaks in Europe increased due to the warming climate?

Lillepold K, et al., J Travel Med. 2019 Jun 11;26(5).

Number of drivers for infectious disease threat events (IDTE), Europe 2008-2013

Semenza JC, et al. *Emerging Infectious Diseases*. 2016; 22(4):581-589.

Cluster dendrogram from hierarchical cluster analysis of drivers of IDTE, Europe 2008-2013

Semenza JC, et al. *Emerging Infectious Diseases*. 2016; 22(4):581-589.

Air passenger volume from dengue active areas internationally

Lillepold K, et al., J Travel Med. 2019 Jun 11;26(5).

Chikungunya under the baseline and RCP 8. climate change scenarios in Europe

Tjaden NB et al., *Sci Rep*. 2017 Jun 19;7(1):3813

Mosquito-borne diseases Future projections

Models have generally projected a **moderate climatic suitability** for chikungunya transmission, notably across France, Spain, Germany and Italy, with increased suitability projected for large areas by the Rhine and Rhone rivers

Some areas by the Adriatic coast in Italy are projected to experience a **decline in suitability** due to the increased probability of summer droughts

Tjaden NB et al., *Sci Rep*. 2017 Jun 19;7(1):3813

Semenza JC. Int. J. Environ. Res. Public Health. 2015;12(6):6333-51

Early warning system Environmental/climatic precursors of diseas

Semenza JC, Nat Immunol. 2020 May;21(5):484-487

Weighted risk analysis of climate change impacts on infectious disease risks in Europe

IDs for suggested changes to disease-specific surveillance are in bold. Asterisks indicate diseases currently notifiable in some EU Member States

ge in Europe	High		Vibrio spp. (except V. cholerae O1 and O139)*	Lyme borreliosis*	Weighted high risk
with climate chan	Medium	CCHF Tularaemia Hepatitis A Yellow fever Leptospirosis Yersiniosis	CampylobacteriosisRift Valley feverChikungunya fever*SalmonellosisCryptospiridiosisShigellosisGiardiasisVTECHantavirusWest Nile fever	Dengue fever TBE*	Weighted medium risk Weighted
Strength of link	Low	Anthrax Q fever Botulism Tetanus Listeriosis Toxoplasmosis Malaria	Cholera (01 and 0139) Legionellosis Meningococcal infection		low risk
		Low Pot	Medium ential severity of consequence to society	High	

Lindgren E et al., *Science*. 2012;336(6080):418-9.

View options

Annual frequency of total *Vibrio* infections notified in Sweden from 2006-2014

Semenza JC, et al. Environ Health Perspect. 2017;125(10):107004

Conclusion

- Climate change can trigger a sequence of events of significant magnitude with consequences for infectious diseases
- The most important driver of Infectious Disease Threat Events (IDTE) in Europe is **travel and tourism** but climate is also an important driver of IDTE
- Climate change has **already** impacted the transmission of a wide-range of water-borne and vector-borne diseases in Europe, and it will **continue** to do so in the coming decades
- Early warning systems could intercept these cascading risks

Acknowledgements

<u>Chikungunya</u> <u>Dengue</u> N. Tjaden	<u>ID Threa</u> <u>Events</u> MO. Sew
J. Suk	E. Lindgı
D. Fischer	S. Brusir
S. Thomas	KK. Aasla
C. Beierkuhnlein	T. Mollet
J. Rocklov	J. Rocklä
Y. Tozan	
A. Ramadona	
MO. Sewe	
B. Sudre	
J. Garrido	
CB. de Saint Lary	
W. Lohr	

K. Lillepold

<u>nreat</u> ts	<u>Wat</u> out
Sewe	B. G
ldgren	B. d
usin	A. C
aslav	S. E
ollet	Н. Н
cklöv	M. K
	V. L
	M. L
	E. M
	J. M Urta G. N
	C. S
	B. S

- L. Trönnberg L. Vold
- K. Nygård

Thank you! Jan.semenza@ecdc.europa.eu